Simplify each expression.

1. $\cos 2 x+\sin ^{2} x+\cos ^{2} x$
2. $\csc x-\cos x \cdot \cot x$
3. $\sin x+\sin x \cdot \cot ^{2} x$
4. $\frac{\sin x}{1+\cos x}+\frac{\sin x}{1-\cos x}$
5. $\cos ^{2} x \cdot \tan ^{2} x+\cos ^{2} x$
6. $(\sec x-\tan x)(1+\sin x)$
7. $\frac{\sin 2 x}{\cos x}+\sin x$
8. $\sin (-x)+\sin x+\cos (-x)+\cos x$
Check \#1-8: $\sin x \cos x \quad \csc x \quad 2 \cos ^{2} x \quad 2 \csc x \quad 2 \cos x \quad 3 \sin x \quad 1$

Verify that each equation is an identity (yes, all of them are identities.) CLEARLY SHOW ALL STEPS!
\rightarrow Start with the "more complicated" side and rewrite/simplify until it matches the other side that stays "as is."
9. $\frac{1+\tan ^{2} x}{\csc x \sec x}=\tan x$
11. $\sin x \cdot \tan x=\sec x-\cos x$
10. $\sec x+\csc x=\frac{\sin x+\cos x}{\sin x \cos x}$
12. $(\sin x-1)(\tan x+\sec x)=-\cos x$

Hints: 1. rewrite using double angle identity, combine like terms
2. rewrite in terms of sin/cos, combine fractions, substitute, then cancel.
3. factor out $\sin x$, then use substitution, rewrite, then cancel.
get common denominator, use FOIL method in denominators and distribute in numerators, combine fractions, then make a substitution and cancel. factor common term, make a substitution, rewrite, and cancel rewrite in terms of sin/cos, combine fractions (subtract $1^{\text {st }}$, then multiply), substitute, cancel rewrite using double angle identity, cancel, add like terms
rewrite using opposite angle identities, combine like terms
substitute Pythagorean identity, cancel, rewrite in terms of sin/cos, invert and solve
0. split apart fraction, cancel, rewrite

1. rewrite secx, get common denominator, substitute, split apart numerator, simplify
2. use FOIL method, rewrite in terms of sin/cos, combine fractions, factor -1 from numerator, substitute, cancel
